Camp Sacramento Erosion Control Project – Five Years Later

California Resource Conservation Districts 2017 Annual Conference November 17, 2017

Paul Wisheropp, PE, CFM Water Resources Engineer Sacramento, CA

Outline

History of Project and Problem Statement

Construction Actions

Volunteer Activities

Sediment Control


Photo Monitoring

Observations

Conclusions

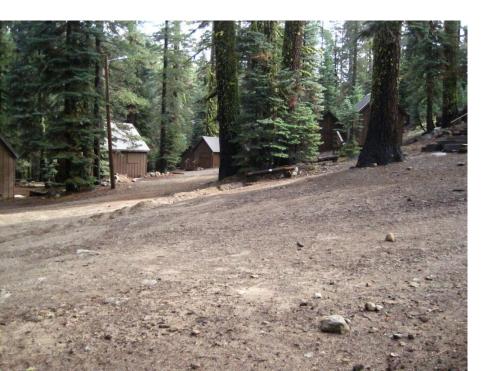
Camp Layout

History and Problem Statement

What is Camp Sacramento?

- Family Camp at 6500' elevation
- Open June through September
- Snow present from November to May

Problem Statement

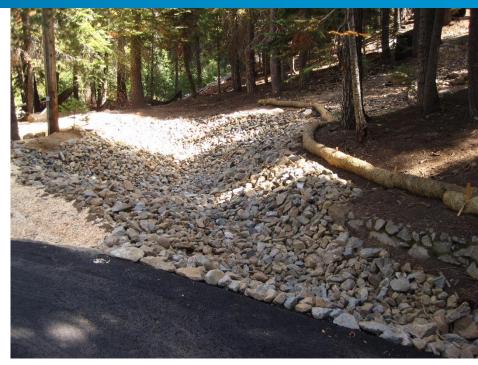

- Granite rocks were "growing"
- Visual evidence of soil loss and soil accumulation
- Sediment ended up in South Fork American River (SOFAR)
- Common problem throughout the Sierras
- Solutions to problem must be compatible with recreation use

History and Problem Statement

Problem Areas

- Riverside Hill
- Roads
- Parking areas
- Volunteer trails

Construction Actions


Erosion Control Master Plan

- Completed in 2011
- Grant-funded by SNC

Phase I Project (near SOFAR)

- Constructed basins
 - Lover's Leap detention basin
 - Archery detention Basin

Basin Details

- Archery Basin outflows to floodplain
- 1.0' and 2.5' of dead storage in Lover's Leap and Archery basins

Construction Actions

Durable Surface Roadway

- Paved steep road section
- Previous site of erosion and sediment movement
- Culvert under road connects two basins

Note:

- Remaining roads in Camp are unpaved
- Trail system is unpaved

Volunteer Activities

Volunteer Activities

- Build rock slope protection
- Build rock-lined channel to connect camp with constructed facilities

Volunteer Activities

Volunteer Activities

- Basins and control berms created in fall to capture winter runoff
- Taken down in spring
- Hydroseed test section in 2013

Erosion Control Design Approach

Design Approach

- Follow Lake Tahoe Approach:
 - Source Control
 - Hydrologic Design
 - Treatment

Runoff Treatment

Treatment Methodology

- Passive treatment (uncontrolled basins)
- Soil berms across roads break up sheet flow and control the runoff direction
- Upslope basins (in camp) lead to Constructed (Phase 1) basins
- Any outflow from Archery Basin goes to SOFAR floodplain
- Terrain barriers in floodplain prevent direct connection with river until high flood stage
- Entire system of berms and basins forms a treatment train

Treatment Train System

Photo Monitoring

Typical Year

- First flush
- Spring snowmelt
- Major storm

Wet Year

- Long duration high intensity storm
- Back-to-back storms

Photo Monitoring

- Typically fall, spring
- Rainstorm of 10/30/16
- Spring snowmelt 2017

Measurements

• Taken Spring 2017

Hydrology

Fall 2016

- Multiple storms starting in October
- Back-to-back 2-yr to 5-yr storms
- Basins filled with water and sediment
- Wash off of detached summertime road sediment

Winter 2017

- Heavy snow starting in November 2016
- Some rain-on snow events but mostly snowfall

Spring 2017

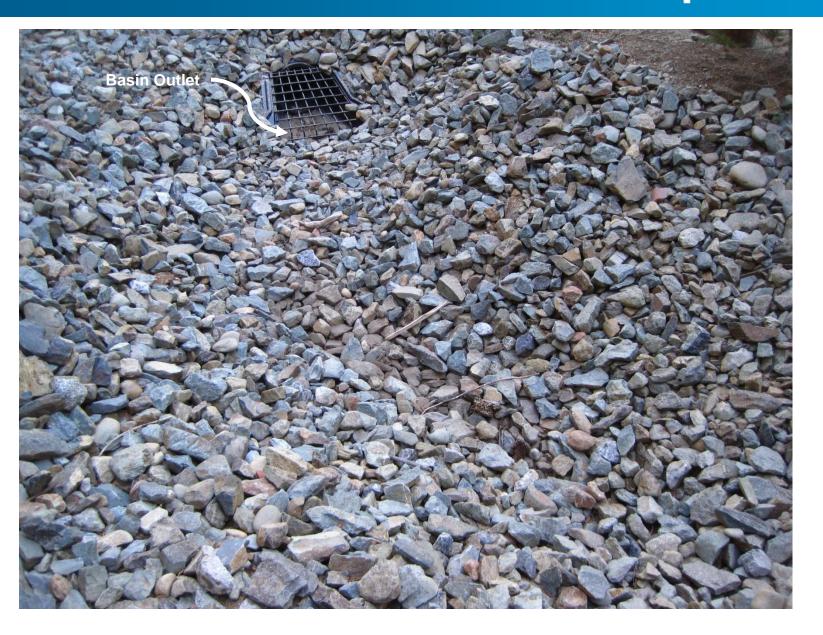
- Snow fell through May
- Several rainfall events in May/June

Basin Response

- Archery and Lover's Leap basins with water on 10/30/16 and empty on 11/2/16
- Archery Basin filled with water on 6/9/17 and near empty next day

Riverside Treatment Train

Main Treatment Train



Treatment Train-Lover's Leap Basin

Treatment Train – Archery Basin

Treatment Train – Archery Basin Outflow

Outflow Conditions

- Outflow to outer edge of floodplain
- Dense tree cover with extensive forest litter
- Flow paths are shown by disturbed litter
- No direct connection with SOFAR

Treatment Train – Archery Basin

Sediment Overflow from Archery Basin into Floodplain

Observations

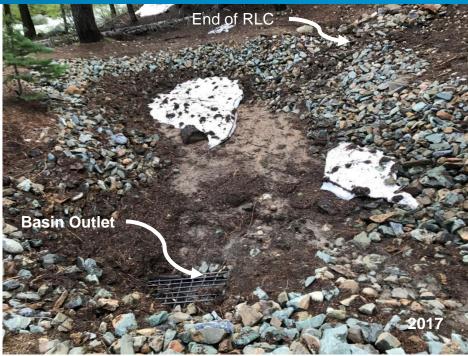
Overflow from Archery Basin

- Multiple fill/spill of constructed basins with limited outflow
- Outflow carried very little sediment that dropped out before the river
- Archery Basin was a detention/retention basin. Water primarily left via infiltration. (2.5' dead storage)
- Outflow now going to river via subsurface rather than overland

Lodge Overflow

- Flow from Main Treatment Train caused by blocked culvert
- Flowed downhill below lodge to outer edge of floodplain
- Overflow ceased after culvert cleared

Temporary Basin Storage


- Temporary basins filled with sediment after first flush
- Disturbed ground yielded majority of sediment
- Soil type indicated source

Collected Sediment-Lover's Leap Basin

Storage Conditions

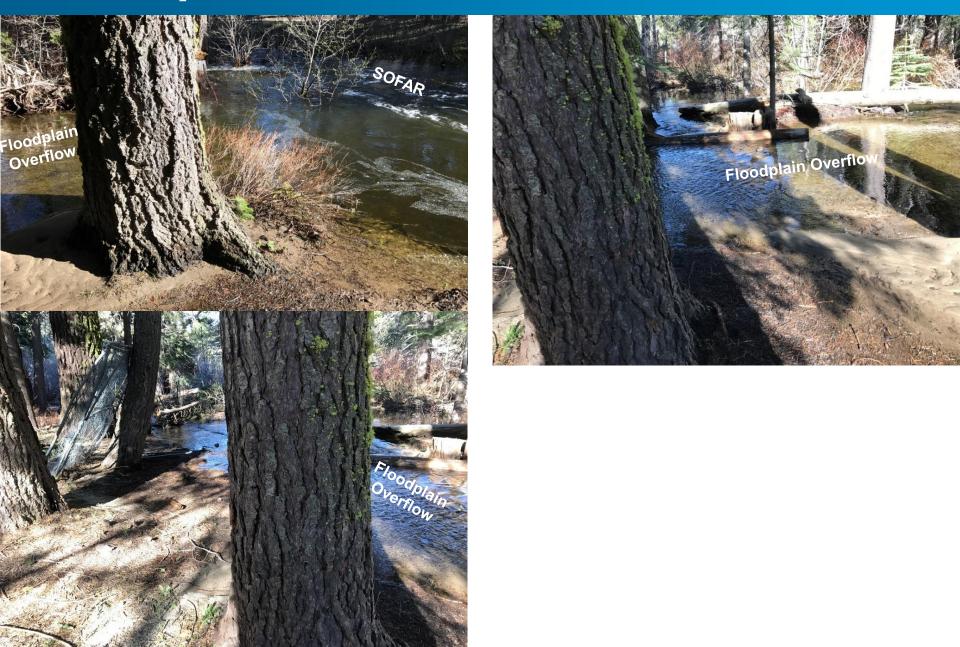
- Limited stored sediment for first 4 years
- Organic matter collected on the road found in basin
- Sediment filled the dead storage extending above the outlet invert

Note: Photos taken from opposite ends of basin

Collected Sediment-Archery Basin

Storage Conditions

- No stored sediment for first 4 years
- Organic matter from Lover's Leap Basin
- Evidence of overflow at outlet weir for several rainfall events


New Sediment – June 9 Storm

Sediment Capture

- Runoff-generating rainstorm
- Snow removal operations disturbed soil in camp
- Runoff was clear during snowmelt but turbid during rainstorm

Floodplain

Floodplain

Floodplain – Meadow Flooding

Floodplain

Conclusions

Source Control

- Essential for controlling sediment revegetation
- Spring snowmelt is clear, sediment free
- First flush rainfall storm produces most sediment
- Sediment loss doesn't end with first flush

Hydrologic Control

- Divert runoff with a controlled berm to a basin
- Break up flow whenever possible

Treatment

- Basins serve several purposes:
 - Trap sediment
 - Partial offset of hydromodification (storage and flow path)
 - Infiltrate runoff in both temporary basins and Constructed Basins

Conclusions

Problems Corrected

- Riverside Hill no longer receiving upslope runoff
- Reduced direct runoff of water and sediment to river

Measurements

- Taken spring 2017
- Estimated basin sediment loads
 - Archery: 156 ft³
 - Lover's Leap: 191 ft³
 - Basin 9: 80 ft³
 - Basin 8: 60 ft³
 - Basin 11: 105 ft³
- Net effect: 7/16 inches of soil loss on camp roads/parking (east side)
- Soil loss is occurring even without noticeable signs
- Develop a monitoring program

Recommendations

Recommendations

- Finish the ECMP
- Need full control of runoff including main camp area
- Replace pre-ECMP undersized culverts
- Replace roads with durable surface
- Designate and improve trails, remove volunteer trails
- Add dripline trenches at cabins wherever possible
- Add monitoring for:
 - Rainfall
 - Water storage in Constructed Basins